Affiliation:
1. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
2. Institute for Agricultural Biosciences Oklahoma State University Ardmore OK 73401 USA
3. Department of Biology University of Fribourg 1700 Fribourg Switzerland
Abstract
Summary
Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo‐chitooligosaccharides (LCOs). The latter are also produced by nitrogen‐fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown.
Here, we analyzed the expression of a β‐N‐acetylhexosaminidase gene of Medicago truncatula (MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role of MtHEXO2 during symbiosis.
We found that expression of MtHEXO2 is associated with AM symbiosis and nodulation. MtHEXO2 expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs. M. truncatula mutants deficient in symbiotic signaling did not show induction of MtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs into N‐acetylglucosamine (GlcNAc). Hexo2 mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected in hexo2 mutants.
In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.
Funder
National Natural Science Foundation of China
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献