An extracellular β‐N‐acetylhexosaminidase of Medicago truncatula hydrolyzes chitooligosaccharides and is involved in arbuscular mycorrhizal symbiosis but not required for nodulation

Author:

Wang Yi‐Han1,Liu Wei1ORCID,Cheng Jing1,Li Ru‐Jie1,Wen Jiangqi2ORCID,Mysore Kirankumar S.2ORCID,Xie Zhi‐Ping1ORCID,Reinhardt Didier3ORCID,Staehelin Christian1ORCID

Affiliation:

1. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China

2. Institute for Agricultural Biosciences Oklahoma State University Ardmore OK 73401 USA

3. Department of Biology University of Fribourg 1700 Fribourg Switzerland

Abstract

Summary Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo‐chitooligosaccharides (LCOs). The latter are also produced by nitrogen‐fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown. Here, we analyzed the expression of a β‐N‐acetylhexosaminidase gene of Medicago truncatula (MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role of MtHEXO2 during symbiosis. We found that expression of MtHEXO2 is associated with AM symbiosis and nodulation. MtHEXO2 expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs. M. truncatula mutants deficient in symbiotic signaling did not show induction of MtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs into N‐acetylglucosamine (GlcNAc). Hexo2 mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected in hexo2 mutants. In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.

Funder

National Natural Science Foundation of China

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3