The adaptive role of melanin plasticity in thermally variable environments

Author:

Britton Sarah1ORCID,Davidowitz Goggy21ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA

2. Department of Entomology University of Arizona Tucson Arizona USA

Abstract

Abstract Understanding the evolution of adaptive plasticity is fundamental to our knowledge of how organisms interact with their environments and cope with environmental change. Plasticity in melanin pigmentation is common in response to variable environments, especially thermal environments. Yet, the adaptive significance of melanin plasticity in thermally variable environments is often assumed, but rarely explicitly tested. Furthermore, understanding the role of plasticity when a trait is responsive to multiple environmental stimuli and plays many functional roles remains poorly understood. We test the hypothesis that melanin plasticity is an adaptation for thermally variable environments using Hyles lineata, the white-lined sphinx moth, which shows plasticity in melanin pigmentation during the larval stage. Melanin pigmentation influences thermal traits in H. lineata, as melanic individuals had higher heating rates and reached higher body temperatures than non-melanic individuals. Importantly, melanin pigmentation has temperature specific fitness consequences. While melanic individuals had an advantage in cold temperatures, neither phenotype had a clear fitness advantage at warm temperatures. Thus, the costs associated with melanin production may be unrelated to thermal context. Our results highlight the importance of explicitly testing the adaptive role of plasticity and considering all the factors that influence costs and benefits of plastic phenotypes across environments. Abstract Effect of melanin on fitness traits differs between temperature environments. While individuals with more melanin perform better in cold environments (higher survival, faster growth, larger sizes), there is no clear evidence for a fitness advantage for either phenotype in a warm environment.

Funder

Graduate and Professional Student Council, University of Arizona

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3