Caught between two states: The compromise in acclimation of photosynthesis, transpiration and mesophyll conductance to different amplitudes of fluctuating irradiance

Author:

Durand Maxime1ORCID,Zhuang Xin23ORCID,Salmon Yann23ORCID,Robson T. Matthew14ORCID

Affiliation:

1. Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences University of Helsinki Finland

2. Institute for Atmospheric and Earth System Research/Physics, Faculty of Science University of Helsinki Helsinki Finland

3. Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences University of Helsinki Helsinki Finland

4. National School of Forestry, Institute of Science & Environment University of Cumbria Ambleside UK

Abstract

AbstractWhile dynamic regulation of photosynthesis in fluctuating light is increasingly recognized as an important driver of carbon uptake, acclimation to realistic irradiance fluctuations is still largely unexplored. We subjected Arabidopsis thaliana (L.) wild‐type and jac1 mutants to irradiance fluctuations with distinct amplitudes and average irradiance. We examined how irradiance fluctuations affected leaf structure, pigments and physiology. A wider amplitude of fluctuations produced a stronger acclimation response. Large reductions of leaf mass per area under fluctuating irradiance framed our interpretation of changes in photosynthetic capacity and mesophyll conductance as measured by three separate methods, in that photosynthetic investment increased markedly on a mass basis, but only a little on an area basis. Moreover, thermal imagery showed that leaf transpiration was four times higher under fluctuating irradiance. Leaves growing under fluctuating irradiance, although thinner, maintained their photosynthetic capacity, as measured through light‐ and CO2‐response curves; suggesting their photosynthesis may be more cost‐efficient than those under steady light, but overall may incur increased maintenance costs. This is especially relevant for plant performance globally because naturally fluctuating irradiance creates conflicting acclimation cues for photosynthesis and transpiration that may hinder progress towards ensuring food security under climate‐related extremes of water stress.

Funder

Academy of Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3