Characterization and mapping of continental breakup and seafloor spreading initiation: The example of the northern rifted margin of the South China Sea

Author:

Zhang Cuimei1,Manatschal Gianreto2,Taylor Brian3,Sun Zhen1ORCID,Zhao Minghui14,Zhang Jiazheng1

Affiliation:

1. CAS Key Laboratory of Ocean and Marginal Sea Geology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China

2. University of Strasbourg, CNRS, ITES UMR 7063 Strasbourg France

3. School of Ocean and Earth Science and Technology University of Hawaiyi at Mānoa Honolulu Hawaii USA

4. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractMapping ocean‐continent transitions (OCTs) separating equivocal continental and oceanic crusts is fundamental to investigate breakup processes and define the age and location of initial seafloor spreading. However, proposed limits of OCTs are rarely consistent, do not use uniform criteria, and result in conflicting interpretations as shown for the case of the northern South China Sea (SCS). We review original datasets including reflection and refraction seismic sections, drilling and potential field data with the aim to develop a ‘drilling‐constrained integrated geological‐geophysical’ approach to define the OCT along the northern SCS, understand the breakup process, and to compare the OCT in the SCS with those at Atlantic type rifted margins. The result shows a narrow, 5–15 km wide OCT. It separates a segmented margin that rifted a former arc in the west and a forearc in the east, both facing a Penrose oceanic crust that thins from the west towards the east. Seafloor spreading may have first nucleated at two centres during magnetic anomaly C11 in the NE and central subbasins, which then locally propagated both W and E to break through salients and produce full breakup at 29 Ma (anomaly C10r). Breakup at the SCS shows many differences to Atlantic type margins, in part due to inheritance but also due to rift/spreading‐related parameters such as strain/spreading rates.

Funder

National Natural Science Foundation of China

Guangzhou Municipal Science and Technology Project

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Detailed Reconstruction of the Woodlark Basin;Geochemistry, Geophysics, Geosystems;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3