Arabidopsis thaliana RPL13aC affects root system architecture through shoot potassium accumulation

Author:

Ma Dichao1ORCID,Fukuda Hirofumi1ORCID,Sotta Naoyuki1ORCID,Fujiwara Toru1ORCID

Affiliation:

1. Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657 Japan

Abstract

SUMMARYPlant root system architecture shows complex patterns adapting to different nutritional conditions. In Arabidopsis thaliana, root slanting is a behaviour that is observed when plants are grown on a solid agar plate vertically. However, the regulatory mechanisms of root slanting in response to nutrient conditions are not fully understood. In this study, we found that mutants of A. thaliana ribosome protein RPL13aC, which is expressed in root tips and leaves, exhibit a decreased root‐slanting phenotype. Ionomic analysis revealed that rpl13ac mutants have a reduced K content in shoots but not in roots. Because K+ availability has been suggested to affect root coiling, we hypothesized that the decreased root slanting of rpl13ac mutants is caused by the decrease in K content in their shoots. Decapitating shoots or limiting K supply dramatically decreased root slanting in wild‐type (WT) plants. We found that the expression of HIGH‐AFFINITY K+ TRANSPORTER 5 (HAK5) significantly decreased in the roots of rpl13ac mutants. Mutants of hak5 showed decreased shoot K contents and decreased root slanting, supporting that the decreased shoot K+ accumulation results in less root slanting. K+ replenishment to the shoots of rpl13ac, hak5 mutants and K‐starved WT plants recovered their root slanting significantly. These results indicate that plants adjust root slanting in response to K+ accumulation in shoots. Further analysis showed that rpl13ac mutants have abnormal thigmotropic responses, which may be responsible for their defects in root slanting. Altogether, these results revealed K+‐dependent mechanisms that affect root system architecture.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3