The m6A reader YTHDC2 regulates UVB‐induced DNA damage repair and histone modification

Author:

Yang Zizhao1ORCID,Verghese Michelle12ORCID,Yang Seungwon1,Shah Palak13,He Yu‐Ying123ORCID

Affiliation:

1. Department of Medicine, Section of Dermatology University of Chicago Chicago Illinois USA

2. Committee on Cancer Biology University of Chicago Chicago Illinois USA

3. Committee on Molecular Pathogenesis and Molecular Medicine University of Chicago Chicago Illinois USA

Abstract

AbstractUltraviolet B (UVB) radiation represents a major carcinogen for the development of all skin cancer types. Mechanistically, UVB induces damage to DNA in the form of lesions, including cyclobutane pyrimidine dimers (CPDs). Disruption of the functional repair processes, such as nucleotide excision repair (NER), allows persistence of DNA damage and contributes to skin carcinogenesis. Recent work has implicated m6A RNA methylation and its regulatory proteins as having critical roles in facilitating UVB‐induced DNA damage repair. However, the biological functions of the m6A reader YTHDC2 are unknown in this context. Here, we show that YTHDC2 inhibition enhances the repair of UVB‐induced DNA damage. We discovered that YTHDC2 inhibition increased the expression of PTEN while it decreased the expression of the PRC2 component SUZ12 and the levels of the histone modification H3K27me3. However, none of these functions were causally linked to the improvements in DNA repair, suggesting that the mechanism utilized by YTHDC2 may be unconventional. Moreover, inhibition of the m6A writer METTL14 reversed the effect of YTHDC2 inhibition on DNA repair while inhibition of the m6A eraser FTO mimicked the effect of YTHDC2 inhibition, indicating that YTHDC2 may regulate DNA repair through the m6A pathway. Finally, compared to normal human skin, YTHDC2 expression was upregulated in human cutaneous squamous cell carcinomas (cSCC), suggesting that it may function as a tumor‐promoting factor in skin cancer. Taken together, our findings demonstrate that the m6A reader YTHDC2 plays a role in regulating UVB‐induced DNA damage repair and may serve as a potential biomarker in cSCC.

Funder

National Institutes of Health

Copenhagen Center for Health Technology

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3