NOD2 contributes to Parvimonas micra‐induced bone resorption in diabetic rats with experimental periodontitis

Author:

Chen Ying‐Yi12,Tan Li1,Su Xiao‐Lin1,Chen Ning‐Xin1,Liu Qiong1,Feng Yun‐Zhi1,Guo Yue1ORCID

Affiliation:

1. Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology The Second Xiangya Hospital, Central South University Changsha China

2. Department of Stomatology Qingdao Central Hospital, University of Health and Rehabilitation Sciences(Qingdao Central Hospital) Qingdao China

Abstract

AbstractBackgroundType 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide‐binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2.MethodsWe collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high‐throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro‐computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin‐12 (IL‐6) were detected by western blot.ResultsThe relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL‐6.ConclusionsThe results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.

Funder

National Natural Science Foundation of China

Hunan Provincial Innovation Foundation for Postgraduate

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3