Affiliation:
1. Department of Public and Nonprofit Administration, School of Urban Affairs and Public Policy The University of Memphis Memphis Tennessee USA
Abstract
AbstractLogistic regression is a standard technique in public administration research. However, there are two inconvenient truths about logistic regression of which scholars should be aware. First, logistic regression results are difficult to interpret. Raw coefficients are expressed in an enigmatic log odds scale and odds ratios are regularly misinterpreted as risk ratios. Second, logistic regression results are non‐collapsible, which renders model comparisons invalid. A review of recent public administration articles reveals that these inconvenient truths still plague the discipline. This paper advocates the use of average marginal effects to reckon with both inconvenient truths. Average marginal effects are easy to comprehend because they measure effect sizes on a probability scale. And average marginal effects are collapsible, and hence facilitate valid model comparisons. These concepts are illustrated using data simulations and data from the 2017 Current Population Survey. The paper concludes with suggestions for improved research practice.
Subject
Marketing,Public Administration,Sociology and Political Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献