Affiliation:
1. Department of Political Science Purdue University West Lafayette Indiana USA
2. Department of Criminology and Criminal Justice University of South Carolina Columbia South Carolina USA
3. Department of Political Science University of Utah Salt Lake City Utah USA
Abstract
AbstractLaw enforcement agencies are increasingly adopting artificial intelligence (AI)‐powered tools. While prior work emphasizes the technological features driving public opinion, we investigate how public trust and support for AI in government vary with the institutional context. We administer a pre‐registered survey experiment to 4200 respondents about AI use cases in policing to measure responsiveness to three key institutional factors: bureaucratic proximity (i.e., local sheriff versus national Federal Bureau of Investigation), algorithmic targets (i.e., public targets via predictive policing versus detecting officer misconduct through automated case review), and agency capacity (i.e., necessary resources and expertise). We find that the public clearly prefers local over national law enforcement use of AI, while reactions to different algorithmic targets are more limited and politicized. However, we find no responsiveness to agency capacity or lack thereof. The findings suggest the need for greater scholarly, practitioner, and public attention to organizational, not only technical, prerequisites for successful government implementation of AI.
Subject
Marketing,Public Administration,Sociology and Political Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献