LinkedIn, LinkedIn on the screen, who is the greatest and smartest ever seen?’: A machine learning approach using valid LinkedIn cues to predict narcissism and intelligence

Author:

Härtel Tobias M.1ORCID,Schuler Benedikt A.2ORCID,Back Mitja D.3ORCID

Affiliation:

1. School of Business Administration and Economics Osnabrück University Osnabrück Germany

2. Institute of Management and Strategy University of St.Gallen St. Gallen Switzerland

3. Department of Psychology University of Münster Münster Germany

Abstract

AbstractRecruiters routinely use LinkedIn profiles to infer applicants' individual traits like narcissism and intelligence, two key traits in online network and organizational contexts. However, little is known about LinkedIn profiles' predictive potential to accurately infer individual traits. According to Brunswik's lens model, accurate trait inferences depend on (a) the presence of valid cues in LinkedIn profiles containing information about users' individual traits and (b) the sensitive and consistent utilization of valid cues. We assessed narcissism (self‐report) and intelligence (aptitude tests) in a sample of 406 LinkedIn users along with 64 LinkedIn cues (coded by three trained coders) that we derived from trait theory and previous empirical findings. We used a transparent, easy‐to‐interpret machine learning algorithm leveraging practical application potentials (elastic net) and applied state‐of‐the‐art resampling techniques (nested cross‐validation) to ensure robust results. Thereby, we uncover LinkedIn profiles' predictive potential: (a) LinkedIn profiles contain valid information about narcissism (e.g. uploading a background picture) and intelligence (e.g. listing many accomplishments), and (b) the elastic nets sensitively and consistently using these valid cues attain prediction accuracy (r = .35/.41 for narcissism/intelligence). The results have practical implications for improving recruiters' accuracy and foreshadow potentials and limitations of automated LinkedIn‐based assessments for selection purposes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3