Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3

Author:

Chen Kaiyuan12,Yan Tianxiang2,Lei Xiuyun2,Lanceros‐Méndez Senentxu13,Yuan Zhi4,Fang Liang2ORCID,Peng Biaolin5ORCID,Wang Dawei6,Liu Laijun2,Zhang Qi13ORCID

Affiliation:

1. BCMaterials Basque center for materials Application & Nanostructures, UPV/EHU Science Park Leioa Spain

2. Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi College of Materials Science and Engineering Guilin University of Technology Guilin China

3. IKERBASQUE Basque Foundation for Science Bilbao Spain

4. Collage of Energy and Building Environment Guilin University of Aerospace Technology Guilin Guangxi China

5. School of Advanced Materials and Nanotechnology Xidian University Xi'an China

6. School of Microelectronics and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an China

Abstract

AbstractThe 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3xPbTiO3 system.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3