Optimization in the energy storage properties of Bi0.5Na0.5TiO3–SrTiO3 ceramics by introducing Bi(Mg0.5Zr0.5)O3

Author:

Jiang Shunshun1,Zhang Ji1ORCID,Karpinsky Dmitry V.2,Li Jinglei3,Liu Lisha1ORCID,Wang Yaojin1ORCID

Affiliation:

1. School of Materials Science and Engineering Nanjing University of Science & Technology Nanjing China

2. Scientific‐Practical Materials Research Centre of NAS of Belarus Minsk Belarus

3. Electronic Materials Research Laboratory (Key Lab of Education Ministry), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China

Abstract

AbstractAs one of the important electronic components, the dielectric capacitors for energy storage applications have been extensively studied in recent years. Among various dielectric materials, the perovskite oxide Bi0.5Na0.5TiO3‐based ceramics have become promising candidates due to their high polarization, dielectric tunability, environment‐friendly composition, and so forth. Herein, the relaxor ferroelectric ceramics of Bi0.5Na0.5TiO3–SrTiO3–Bi(Mg0.5Zr0.5)O3 were prepared via solid‐state reaction method. The sample with optimal composition not only retains the high polarization by introducing Bi3+ ions, but also achieves the reduced remanent polarization by enhancing relaxor behavior and the promoted electric breakdown strength by the grain size refinement. Accordingly, a high recoverable energy density of 8.3 J/cm3 under 450 kV/cm and the superb charge/discharge properties (current density CD = 1200 A/cm2, power density PD = 150 MW/cm3, charge/discharge time t0.9 = 0.15 µs) are achieved, revealing great prospect in energy storage applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3