Affiliation:
1. College of Materials Science and Engineering Guilin University of Technology Guilin China
2. Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
3. Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices Hubei University Wuhan China
4. School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin China
Abstract
AbstractIn many studies, the properties of BiFeO3–BaTiO3 (BF–BT) ceramics vary greatly using different raw reagents, which makes it challenging to obtain reliable and repeatable properties of BF–BT‐based devices. In this work, 0.7BiFeO3–0.3BaTiO3 (0.7BF–0.3BT) ceramics were fabricated by a conventional solid‐phase synthesis using TiO2 reagents with varied purities of 98%, 99%, 99.9%, and 99.99%, respectively. The phase structure, microstructure, ferroelectric, and piezoelectric properties were comprehensively studied. All compositions of the ceramics exhibit a pseudo‐cubic phase perovskite structure, and the fraction of the rhombohedral phase increases with increasing the TiO2 purity. Additionally, backscattered electron images and energy‐dispersive spectroscopy revealed an obvious core–shell structure within grains. In particular, the 0.7BF–0.3BT ceramics prepared with 98% purity TiO2 exhibited superior ferroelectric and piezoelectric properties, d33 ∼ 220 pC/N and ∼ 230 pm/V. The ceramics prepared with higher purity TiO2 suffered from severe leakage conduction, which can be well addressed by adding excess TiO2. Our work reveals the importance of different grades of purity TiO2 on the electrical properties of BF–BT ceramics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献