The extent of multiallelic, co‐editing of LIGULELESS1 in highly polyploid sugarcane tunes leaf inclination angle and enables selection of the ideotype for biomass yield

Author:

Brant Eleanor J.12,Eid Ayman12,Kannan Baskaran12ORCID,Baloglu Mehmet Cengiz12,Altpeter Fredy12ORCID

Affiliation:

1. Agronomy Department, Plant Molecular and Cellular Biology Program Genetics Institute, University of Florida, IFAS Gainesville Florida USA

2. DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville Florida USA

Abstract

SummarySugarcane (Saccharum spp. hybrid) is a prime feedstock for commercial production of biofuel and table sugar. Optimizing canopy architecture for improved light capture has great potential for elevating biomass yield. LIGULELESS1 (LG1) is involved in leaf ligule and auricle development in grasses. Here, we report CRISPR/Cas9‐mediated co‐mutagenesis of up to 40 copies/alleles of the putative LG1 in highly polyploid sugarcane (2n = 100–120, x = 10–12). Next generation sequencing revealed co‐editing frequencies of 7.4%–100% of the LG1 reads in 16 of the 78 transgenic lines. LG1 mutations resulted in a tuneable leaf angle phenotype that became more upright as co‐editing frequency increased. Three lines with loss of function frequencies of ~12%, ~53% and ~95% of lg1 were selected following a randomized greenhouse trial and grown in replicated, multi‐row field plots. The co‐edited LG1 mutations were stably maintained in vegetative progenies and the extent of co‐editing remained constant in field tested lines L26 and L35. Next generation sequencing confirmed the absence of potential off targets. The leaf inclination angle corresponded to light transmission into the canopy and tiller number. Line L35 displaying loss of function in ~12% of the lg1 NGS reads exhibited an 18% increase in dry biomass yield supported by a 56% decrease in leaf inclination angle, a 31% increase in tiller number, and a 25% increase in internode number. The scalable co‐editing of LG1 in highly polyploid sugarcane allows fine‐tuning of leaf inclination angle, enabling the selection of the ideotype for biomass yield.

Funder

U.S. Department of Energy

National Institute of Food and Agriculture

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3