Different Group A Streptococcus pili lead to varying proinflammatory cytokine responses and virulence

Author:

Takahashi Risa1,J‐Khemlani Adrina Hema1ORCID,Loh Jacelyn Mei San12ORCID,Radcliff Fiona Jane12ORCID,Proft Thomas12ORCID,Tsai Catherine Jia‐Yun12ORCID

Affiliation:

1. Department of Molecular Medicine & Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand

2. Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland Auckland New Zealand

Abstract

AbstractThe human pathogen Streptococcus pyogenes, or Group A Streptococcus (GAS), is associated with a variety of diseases ranging from mild skin and soft tissue infections to invasive diseases and immune sequelae such as rheumatic heart disease. We have recently reported that one of the virulence factors of this pathogen, the pilus, has inflammatory properties and strongly stimulates the innate immune system. Here we used a range of nonpathogenic Lactococcus lactis gain‐of‐function mutants, each expressing one of the major pilus types of GAS, to compare the immune responses generated by various types of fully assembled pili. In vitro assays indicated variability in the inflammatory response induced by different pili, with the fibronectin‐binding, collagen‐binding, T antigen (FCT)‐1‐type pilus from GAS serotype M6/T6 inducing significantly stronger cytokine secretion than other pili. Furthermore, we established that the same trend of pili‐mediated immune response could be modeled in Galleria mellonella larvae, which possess a similar innate immune system to vertebrates. Counterintuitively, across the panel of pili types examined in this study, we observed a negative correlation between the intensity of the immune response demonstrated in our experiments and the disease severity observed clinically in the GAS strains associated with each pilus type. This observation suggests that pili‐mediated inflammation is more likely to promote bacterial clearance instead of causing disruptive damages that intensify pathogenesis. This also indicates that pili may not be the main contributor to the inflammatory symptoms seen in GAS diseases. Rather, the immune‐potentiating properties of the pilus components could potentially be exploited as a vaccine adjuvant.

Funder

Marsden Fund

Publisher

Wiley

Subject

Cell Biology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3