Efficiency of cutaneous heat diffusion after local hyperthermia for the treatment of itch

Author:

Wohlrab Johannes12,Mentel Tim3,Eichner Adina2ORCID

Affiliation:

1. Department of Dermatology and Venereology Martin Luther University Halle‐Wittenberg Halle (Saale) Germany

2. Institute of applied Dermatopharmacy Martin Luther University Halle‐Wittenberg Halle (Saale) Germany

3. Mibetec GmbH Sandersdorf‐Brehna Germany

Abstract

AbstractBackgroundToday, itching is understood as an independent sensory perception, which is based on a complex etiology of a disturbed neuronal activity and leads to clinical symptoms. The primary afferents (pruriceptors) have functional overlaps with afferents of thermoregulation (thermoceptors). Thus, an antipruritic effect can be caused by antagonizing heat‐sensitive receptors of the skin. The ion channel TRP‐subfamily V member 1 (TRPV1) is of particular importance in this context. Repeated heat application can induce irreversible inactivation by unfolding of the protein, causing a persistent functional deficit and thus clinically and therapeutically reducing itch sensation.Material and methodsTo demonstrate relevant heat diffusion after local application of heat (45°C to 52°C for 3 and 5 seconds) by a technical medical device, the temperature profile for the relevant skin layer was recorded synchronously on ex vivo human skin using an infrared microscope.ResultsThe results showed that the necessary activation temperature for TRPV1 of (≥43°C) in the upper relevant skin layers was safely reached after 3 and 5 seconds of application time. There were no indications of undesirable thermal effects.ConclusionThe test results show that the objectified performance of the investigated medical device can be expected to provide the necessary temperature input for the activation of heat‐sensitive receptors in the skin. Clinical studies are necessary to prove therapeutic efficacy in the indication pruritus.

Publisher

Wiley

Subject

Dermatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3