A novel practical algorithm using machine learning to differentiate outflow tract ventricular arrhythmia origins

Author:

Shimojo Masafumi12,Inden Yasuya2ORCID,Yanagisawa Satoshi2ORCID,Suzuki Noriyuki2,Tsurumi Naoki2,Watanabe Ryo2,Nakagomi Toshifumi2,Okajima Takashi2,Suga Kazumasa2,Tsuji Yukiomi12,Murohara Toyoaki2

Affiliation:

1. Department of Cardiovascular Research and Innovation Nagoya University Graduate School of Medicine Nagoya Aichi Japan

2. Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Aichi Japan

Abstract

AbstractIntroductionDiagnosis of outflow tract ventricular arrhythmia (OTVA) localization by an electrocardiographic complex is key to successful catheter ablation for OTVA. However, diagnosing the origin of OTVA with a precordial transition in lead V3 (V3TZ) is challenging. This study aimed to create the best practical electrocardiogram algorithm to differentiate the left ventricular outflow tract (LVOT) from the right ventricular outflow tract (RVOT) of OTVA origin with V3TZ using machine learning.MethodsOf 498 consecutive patients undergoing catheter ablation for OTVA, we included 104 patients who underwent ablation for OTVA with V3TZ and identified the origin of LVOT (n = 62) and RVOT (n = 42) from the results. We analyzed the standard 12‐lead electrocardiogram preoperatively and measured 128 elements in each case. The study population was randomly divided into training group (70%) and testing group (30%), and decision tree analysis was performed using the measured elements as features. The performance of the algorithm created in the training group was verified in the testing group.ResultsFour measurements were identified as important features: the aVF/II R‐wave ratio, the V2S/V3R index, the QRS amplitude in lead V3, and the R‐wave deflection slope in lead V3. Among them, the aVF/II R‐wave ratio and the V2S/V3R index had a particularly strong influence on the algorithm. The performance of this algorithm was extremely high, with an accuracy of 94.4%, precision of 91.5%, recall of 100%, and an F1‐score of 0.96.ConclusionsThe novel algorithm created using machine learning is useful in diagnosing the origin of OTVA with V3TZ.

Publisher

Wiley

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3