BallMerge: High‐quality Fast Surface Reconstruction via Voronoi Balls

Author:

Parakkat Amal Dev1,Ohrhallinger Stefan2,Eisemann Elmar3,Memari Pooran4

Affiliation:

1. LTCI ‐ Telecom Paris, IP Paris France

2. TU Wien Austria

3. TU Delft Netherlands

4. CNRS, LIX ‐ INRIA, Ecole Polytechnique, IP Paris France

Abstract

AbstractWe introduce a Delaunay‐based algorithm for reconstructing the underlying surface of a given set of unstructured points in 3D. The implementation is very simple, and it is designed to work in a parameter‐free manner. The solution builds upon the fact that in the continuous case, a closed surface separates the set of maximal empty balls (medial balls) into an interior and exterior. Based on discrete input samples, our reconstructed surface consists of the interface between Voronoi balls, which approximate the interior and exterior medial balls. An initial set of Voronoi balls is iteratively processed, merging Voronoi‐ball pairs if they fulfil an overlapping error criterion. Our complete open‐source reconstruction pipeline performs up to two quick linear‐time passes on the Delaunay complex to output the surface, making it an order of magnitude faster than the state of the art while being competitive in memory usage and often superior in quality. We propose two variants (local and global), which are carefully designed to target two different reconstruction scenarios for watertight surfaces from accurate or noisy samples, as well as real‐world scanned data sets, exhibiting noise, outliers, and large areas of missing data. The results of the global variant are, by definition, watertight, suitable for numerical analysis and various applications (e.g., 3D printing). Compared to classical Delaunay‐based reconstruction techniques, our method is highly stable and robust to noise and outliers, evidenced via various experiments, including on real‐world data with challenges such as scan shadows, outliers, and noise, even without additional preprocessing.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3