SENS: Part‐Aware Sketch‐based Implicit Neural Shape Modeling

Author:

Binninger Alexandre1ORCID,Hertz Amir2ORCID,Sorkine‐Hornung Olga1ORCID,Cohen‐Or Daniel2ORCID,Giryes Raja2ORCID

Affiliation:

1. ETH Zurich Switzerland

2. Tel Aviv University Israel

Abstract

AbstractWe present SENS, a novel method for generating and editing 3D models from hand‐drawn sketches, including those of abstract nature. Our method allows users to quickly and easily sketch a shape, and then maps the sketch into the latent space of a part‐aware neural implicit shape architecture. SENS analyzes the sketch and encodes its parts into ViT patch encoding, subsequently feeding them into a transformer decoder that converts them to shape embeddings suitable for editing 3D neural implicit shapes. SENS provides intuitive sketch‐based generation and editing, and also succeeds in capturing the intent of the user's sketch to generate a variety of novel and expressive 3D shapes, even from abstract and imprecise sketches. Additionally, SENS supports refinement via part reconstruction, allowing for nuanced adjustments and artifact removal. It also offers part‐based modeling capabilities, enabling the combination of features from multiple sketches to create more complex and customized 3D shapes. We demonstrate the effectiveness of our model compared to the state‐of‐the‐art using objective metric evaluation criteria and a user study, both indicating strong performance on sketches with a medium level of abstraction. Furthermore, we showcase our method's intuitive sketch‐based shape editing capabilities, and validate it through a usability study.

Publisher

Wiley

Reference82 articles.

1. AtzmonM. HaimN. YarivL. IsraelovO. MaronH. LipmanY.:Controlling neural level sets 2019. doi:10.48550/ARXIV.1905.11911. 1

2. Sketch-based interaction and modeling: where do we stand?

3. BandyopadhyayH. KoleyS. DasA. SainA. ChowdhuryP. N. XiangT. BhuniaA. K. SongY.‐Z.: Doodle your 3d: From abstract freehand sketches to precise 3d shapes.arXiv preprint arXiv:2312.04043(2023). 9

4. CannyJ.: A computational approach to edge detection.IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI‐8 6 (1986) 679–698. doi:10.1109/TPAMI.1986.4767851. 7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3