PKL is stabilized by MMS21 to negatively regulate Arabidopsis drought tolerance through directly repressing AFL1 transcription

Author:

Jing Yexing1ORCID,Yang Ziyi1ORCID,Yang Ruizhen1ORCID,Zhang Yunwei1ORCID,Qiao Weihua1ORCID,Zhou Yun2ORCID,Sun Jiaqiang1ORCID

Affiliation:

1. State Key Laboratory of Crop Gene Resources and Breeding Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081 China

2. State Key Laboratory of Crop Stress Adaptation and Improvement School of Life Sciences, Henan University Kaifeng 475001 China

Abstract

Summary Drought stress causes substantial losses in crop production per year worldwide, threatening global food security. Identification of the genetic components underlying drought tolerance in plants is of great importance. In this study, we report that loss‐of‐function of the chromatin‐remodeling factor PICKLE (PKL), which is involved in repression of transcription, enhances drought tolerance of Arabidopsis. At first, we find that PKL interacts with ABI5 to regulate seed germination, but PKL regulates drought tolerance independently of ABI5. Then, we find that PKL is necessary for repressing the drought‐tolerant gene AFL1, which is responsible for the drought‐tolerant phenotype of pkl mutant. Genetic complementation tests demonstrate that the Chromo domain and ATPase domain but not the PHD domain are required for the function of PKL in regulating drought tolerance. Interestingly, we find that the DNA‐binding domain (DBD) is essential for the protein stability of PKL. Furthermore, we demonstrate that the SUMO E3 ligase MMS21 interacts with and enhances the protein stability of PKL. Genetic interaction analysis shows that MMS21 and PKL additively regulate plant drought tolerance. Collectively, our findings uncover a MMS21‐PKL‐AFL1 module in regulating plant drought tolerance and offer insights into a novel strategy to improve crop drought tolerance.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3