Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning

Author:

Martínez Andrés S.1ORCID,Dreidemie Carola23,Inchaurza Fernan2,Cucurull Agustin2,Basti Marian2,Masciocchi Maité1ORCID

Affiliation:

1. Grupo de Ecología de Poblaciones de Insectos IFAB–Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA ‐ CONICET) San Carlos de Bariloche Argentina

2. LVCC Laboratorio de Visualización y Código Creativo, CITECCA Centro Interdisciplinario de Telecomunicaciones, Electrónica Computación y Ciencias Aplicadas, UNRN Universidad Nacional de Rio Negro San Carlos de Bariloche Argentina

3. Policémies La Rochelle Université La Rochelle France

Abstract

Abstract We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad hoc post‐processing software was developed to identify the direction of movement and caste of the recorded individuals. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals. This innovative tool holds immense potential for advancing ecological and behavioural research by providing researchers with rapid and easily accessible data. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3