Insights into the convergent evolution of fructan biosynthesis in angiosperms from the highly characteristic chicory genome

Author:

Shen Fei1ORCID,He Hao12ORCID,Huang Xin1ORCID,Deng Yang1ORCID,Yang Xiaozeng1ORCID

Affiliation:

1. Institute of Biotechnology Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China

2. College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China

Abstract

Summary Fructans in angiosperms play essential roles in physiological functions and environmental adaptations. As a major source of industrial fructans (especially inulin‐type), chicory (Cichorium intybus L.) is a model species for studying fructan biosynthesis. However, the genes underlying this process and their evolutionary history in angiosperms remain elusive. We combined multiple sequencing technologies to assemble and annotate the chicory genome and scan its (epi)genomic features, such as genomic components, DNA methylation, and three‐dimensional (3D) structure. We also performed a comparative genomics analysis to uncover the associations between key traits and gene families. We achieved a nearly complete chicory genome assembly and found that continuous bursts of a few highly active retrotransposon families largely shaped the (epi)genomic characteristics. The highly methylated genome with its unique 3D structure potentially influences critical biological processes. Our comprehensive comparative genomics analysis deciphered the genetic basis for the rich sesquiterpene content in chicory and indicated that the fructan‐accumulating trait resulted from convergent evolution in angiosperms due to shifts in critical sites of fructan‐active enzymes. The highly characterized chicory genome provides insight into Asteraceae evolution and fructan biosynthesis in angiosperms.

Funder

Beijing Academy of Agricultural and Forestry Sciences

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3