Enhanced neuron–glia network in the submucosa and increased neuron outgrowth into the mucosa are associated with distinctive expressions of neuronal factors in the colon of rat IBS model

Author:

Fujikawa Yoshiko1ORCID,Tominaga Kazunari2ORCID

Affiliation:

1. Osaka Medical Association Center Osaka Japan

2. Yodoyabashi Medical Examination Center Osaka Japan

Abstract

AbstractBackgroundNeuronal attraction and repulsion factors regulate neuron network formation. In the colon of irritable bowel syndrome (IBS), neuron network and enteric glial cells (EGCs) in the submucosa, neuronal outgrowth in the mucosa, and expressions of neuronal factors remain unknown.MethodsIBS models were prepared by intracolonic injections of acetic acid to Wistar Kyoto (WKY) rats. Using whole‐mount submucosal plexus tissue stripped from the distal colon, we examined neuron network, EGC morphology, and localization of both attraction factor (nerve growth factor: NGF) and repulsion factor (semaphorin3A: Sema3A). We evaluated mRNA expressions of NGF and Sema3A in the mucosa and submucosa and neuron outgrowth into the mucosa.Key ResultsIn IBS models, nerve fibers were thickened and densely increased in the submucosa remarkably from the outer toward the inner plexus. Submucosal EGCs exhibited process hyperplasia and bulbous swelling of terminals. NGF was predominantly expressed in EGCs than neurons in the submucosa. NGF mRNA expressions were increased in the submucosa in WKY, and their expressions were increased in the mucosa after the injection. Sema3A mRNA expressions were increased in both layers of WKY but tended to be decreased in the mucosa alone after the injection. Neuron outgrowth was increased into the mucosa. NGF was localized at EGCs in the lamina propria mucosae but not mucosal mast cells.Conclusions & InferencesNeuron network enhancement in the submucosa and neuron outgrowth into the mucosa may be associated with axon guidance factors expressed in hyperplastic EGCs in the colonic submucosa of IBS models.

Publisher

Wiley

Subject

Gastroenterology,Endocrine and Autonomic Systems,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3