Development of a next generation SNP genotyping array for wheat

Author:

Burridge Amanda J.1ORCID,Winfield Mark1ORCID,Przewieslik‐Allen Alexandra1,Edwards Keith J.1,Siddique Imteaz2,Barral‐Arca Ruth2,Griffiths Simon3,Cheng Shifeng4,Huang Zejian4,Feng Cong4,Dreisigacker Susanne5,Bentley Alison R.6,Brown‐Guedira Gina7,Barker Gary L.1

Affiliation:

1. School of Biological Sciences University of Bristol Bristol UK

2. Thermo Fisher Scientific 3450 Central Expressway Santa Clara CA USA

3. John Innes Centre Norwich Research Park Norwich UK

4. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China

5. International Maise and Wheat Improvement Center (CIMMYT) Texcoco Mexico

6. NIAB Cambridge UK

7. Plant Science Research Unit USDA Agricultural Research Service Raleigh NC USA

Abstract

SummaryHigh‐throughput genotyping arrays have provided a cost‐effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384‐well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the ‘Triticum aestivum Next Generation’ array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins ‘Core Collection’. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype‐optimized novel SNPs and legacy cross‐platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome‐wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3