Affiliation:
1. Centre for Optometry and Vision Science, Biomedical Sciences Research Institute Ulster University Coleraine UK
2. National Institute for Health Research (NIHR) Biomedical Research Centre Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology London UK
3. School of Optometry & Vision Sciences Cardiff University Cardiff UK
Abstract
AbstractPurposeThe relationship between perimetric stimulus area and Ricco's area (RA) determines measured thresholds and the sensitivity of perimetry to retinal disease. The nature of this relationship, in addition to effect of retinal ganglion cell (RGC) number on this, is currently unknown for the adaptation conditions of mesopic microperimetry. In this study, achromatic mesopic spatial summation was measured across the central visual field to estimate RA with the number of RGCs underlying RA also being established.MethodsAchromatic luminance thresholds were measured for six incremental spot stimuli (0.009–2.07 deg2) and 190.4 ms duration, at four locations, each at 2.5°, 5° and 10° eccentricity in five healthy observers (mean age 61.4 years) under mesopic conditions (background 1.58 cd/m2). RA was estimated using two‐phase regression analysis with the number of RGCs underlying RA being calculated using normative histological RGC counts.ResultsRicco's area exhibited a small but statistically insignificant increase between 2.5° and 10° eccentricity. Compared with photopic conditions, RA was larger, with the difference between RA and the Goldmann III stimulus (0.43°) being minimised. RGC number underlying RA was also higher than reported for photopic conditions (median 70 cells, IQR 36–93), with no significant difference being observed across test locations.ConclusionsRicco's area and the number of RGCs underlying RA do not vary significantly across the central visual field in mesopic conditions. However, RA is larger and more similar to the standard perimetric Goldmann III stimulus under mesopic compared with photopic adaptation conditions. Further work is required to determine if compensatory enlargements in RA occur in age‐related macular degeneration, to establish the optimal stimulus parameters for AMD‐specific microperimetry.
Subject
Sensory Systems,Optometry,Ophthalmology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献