Tet methylcytosine dioxygenase 1 modulates Porphyromonas gingivalis–triggered pyroptosis by regulating glycolysis in cementoblasts

Author:

Peng Yan1,Wang Huiyi1,Huang Xin1,Liu Heyu1,Xiao Junhong1,Wang Chuan12,Ma Li12,Wang Xiaoxuan12,Cao Zhengguo12

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology Wuhan University Wuhan China

2. Department of Periodontology, School & Hospital of Stomatology Wuhan University Wuhan China

Abstract

AbstractPorphyromonas gingivalis is involved in the pathogenesis of multiple polymicrobial biofilm–induced inflammatory diseases, including apical periodontitis, and it triggers pyroptosis accompanied by robust inflammatory responses. Tet methylcytosine dioxygenase 1 (TET1), an epigenetic modifier enzyme, has been is correlated with inflammation, though an association of TET1 and P. gingivalis–related pyroptosis in cementoblasts and the molecular mechanisms has not been shown. Our study here demonstrated that P. gingivalis downregulated Tet1 expression and elicited CASP11‐ and GSDMD‐dependent pyroptosis. Additionally, Tet1 mRNA silencing in cementoblasts appeared to result in a more severe pyroptotic phenotype, where levels of CASP11 and GSDMD cleavage, lactate dehydrogenase release, and IL‐1β and IL‐18 production were significantly increased. Moreover, Tet1 overexpression resulted in blockade of pyroptosis activation accompanied by inflammation moderation. Further analyses revealed that TET1 modulated glycolysis, confirmed by the application of the specific inhibitor 2‐deoxy‐d‐glucose (2‐DG). The pyroptosis phenotype enhanced by Tet1 silencing was moderated by 2‐DG upon P. gingivalis invasion. Taken together, these data show the effects and underlying mechanisms of TET1 on pyroptosis and inflammatory phenotype induced by P. gingivalis in cementoblasts, and provides insight into the involvement of P. gingivalis in apical periodontitis and, possibly, other inflammatory diseases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

History and Philosophy of Science,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3