Next‐generation bromodomain inhibitors of the SWI/SNF complex enhance DNA damage and cell death in glioblastoma

Author:

Yang Chuanhe1,He Yali2,Wang Yinan1,McKinnon Peter J.3,Shahani Vijay4,Miller Duane D.25,Pfeffer Lawrence M.15ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine College of Medicine, University of Tennessee Health Science Center Memphis Tennessee USA

2. Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Science Center Memphis Tennessee USA

3. St. Jude Children's Research Hospital Memphis Tennessee USA

4. Recursion Pharmaceuticals Inc Toronto Ontario M5V 2A2 Canada

5. The Center for Cancer Research University of Tennessee Health Science Center Memphis Tennessee USA

Abstract

AbstractGlioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy‐resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI‐3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV‐129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV‐255 and IV‐275 had higher bioactivity than IV‐129, with IV‐255 selectively binding to the bromodomain of BRG1 and not BRM, while IV‐275 bound well to both BRG1 and BRM bromodomains. In contrast, IV‐191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV‐255 and IV‐275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next‐generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.

Funder

Health Science Center, University of Tennessee

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3