Heat shock protein family A member 8 is a prognostic marker for bladder cancer: Evidences based on experiments and machine learning

Author:

Liu Yang1,Pang Zhong‐qi1,Wang Jian‐she1,Wang Jin‐feng1,He Jia‐xin1,Ji Bo1,Zhang Lu1,Ren Ming‐hua1ORCID

Affiliation:

1. Department of Urinary Surgery First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China

Abstract

AbstractHeat shock protein member 8 (HSPA8) is one of the most abundant chaperones in eukaryotic cells, but its biological roles in bladder cancer (BC) are largely unclear. First, we observed that HSPA8 was abundant in both cell lines and tissues of BC, and the HSPA8‐high group had poorer T stages and overall survival (OS) than the HSPA8‐low group in the TCGA patients. Next, when we knocked down HSPA8 in BC cells, the growth and migration abilities were significantly decreased, the apoptosis rates were significantly increased, and the Ki67 fluorescence intensity was decreased in BC cells. Moreover, caspase 3 was significantly decreased with overexpression of HSPA8 in BC cells. After that, a machine learning prognostic model was created based on the expression of HSPA8 by applying LASSO Cox regression in TCGA and GEO patients. The model indicated that the low‐risk (LR) group with BC had better tumour stages, lymphovascular invasion, and OS than the high‐risk (HR) group. Additionally, the risk score was demonstrated to be an independent risk factor for the prognosis of BC by univariate and multivariate Cox analyses. Moreover, the HR group showed a greater rate of TP53 mutations and was mostly enriched in the ECM‐receptor interaction pathway than the LR group. Importantly, lower CD8+ T‐cell and NK cell infiltration, higher immune exclusion scores, higher expression of PD‐L1 and CTLA4 and poorer immune checkpoint therapy effects were found in the HR group. These findings demonstrated how crucial HSPA8 plays a role in determining the prognosis of bladder cancer.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3