Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients

Author:

Wostradowski T12,Gudi V1,Pul R1,Gingele S1,Lindquist J A34,Stangel M12,Lindquist S15

Affiliation:

1. Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany

2. Center for Systems Neuroscience, Hannover, Germany

3. Department of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

4. Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

5. Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, and Neurological Rehabilitation Centre, MEDIAN Kliniken, Magdeburg, Germany

Abstract

Summary Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease triggered by infiltration of activated T cells into the central nervous system. Interferon (IFN)-β is an established, safe and effective treatment for patients with relapsing–remitting MS (RRMS). The cytokine can inhibit leucocyte infiltration into the central nervous system; however, little is known about the precise molecular mechanisms. Previously, in vitro application of IFN-β1b was shown to reduce CXCL12/CXCR4-mediated monocyte migration. Here, we analysed the effects of IFN-β1b on CXCR4-dependent T cell function. In vitro exposure to IFN-β1b (1000 U/ml) for 20 h reduced CXCR4-dependent chemotaxis of primary human T cells from healthy individuals and patients with RRMS. Investigating the IFN-β1b/CXCR4 signalling pathways, we found no difference in phosphorylation of ZAP70, ERK1/2 and AKT despite an early induction of the negative regulator of G-protein signalling, RGS1 by IFN-β1b. However, CXCR4 surface expression was reduced. Quantitative real time-PCR revealed a similar reduction in CXCR4-mRNA, and the requirement of several hours' exposure to IFN-β1b supports a transcriptional regulation. Interestingly, T cells from MS patients showed a lower CXCR4 expression than T cells from healthy controls, which was not reduced further in patients under IFN-β1b therapy. Furthermore, we observed no change in CXCL12-dependent chemotaxis in RRMS patients. Our results demonstrate clearly that IFN-β1b can impair the functional response to CXCR4 by down-regulating its expression, but also points to the complex in vivo effects of IFN-β1b therapy.

Funder

Bayer HealthCare Pharmaceuticals

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3