Cellular and molecular evidence that synaptic Schwann cells contribute to aging of mouse neuromuscular junctions

Author:

Hastings Robert Louis1ORCID,Avila Mary Flordelys2,Suneby Emma3,Juros Devin1,O'Young Anson1,Peres da Silva Jason1,Valdez Gregorio14ORCID

Affiliation:

1. Department of Molecular Biology, Cell Biology and Biochemistry Brown University Providence Rhode Island USA

2. Pathobiology Graduate Program Brown University Providence Rhode Island USA

3. Molecular Biology, Cell Biology, & Biochemistry Graduate Program Brown University Providence Rhode Island USA

4. Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, and Center on the Biology of Aging Brown University Providence Rhode Island USA

Abstract

AbstractAge‐induced degeneration of the neuromuscular junction (NMJ) is associated with motor dysfunction and muscle atrophy. While the impact of aging on the NMJ presynapse and postsynapse is well‐documented, little is known about the changes perisynaptic Schwann cells (PSCs), the synaptic glia of the NMJ, undergo during aging. Here, we examined PSCs in young, middle‐aged, and old mice in three muscles with different susceptibility to aging. Using light and electron microscopy, we found that PSCs acquire age‐associated cellular features either prior to or at the same time as the onset of NMJ degeneration. Notably, we found that aged PSCs fail to completely cap the NMJ even though they are more abundant in old compared with young mice. We also found that aging PSCs form processes that either intrude into the synaptic cleft or guide axonal sprouts to innervate other NMJs. We next profiled the transcriptome of PSCs and other Schwann cells (SCs) to identify mechanisms altered in aged PSCs. This analysis revealed that aged PSCs acquire a transcriptional pattern previously shown to promote phagocytosis that is absent in other SCs. It also showed that aged PSCs upregulate unique pro‐inflammatory molecules compared to other aged SCs. Interestingly, neither synaptogenesis genes nor genes that are typically upregulated by repair SCs were induced in aged PSCs or other SCs. These findings provide insights into cellular and molecular mechanisms that could be targeted in PSCs to stave off the deleterious effects of aging on NMJs.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Aging

National Institutes of Health

Publisher

Wiley

Subject

Cell Biology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3