Dl‐3‐n‐butylphthalide promotes synaptic plasticity by activating the Akt/ERK signaling pathway and reduces the blood–brain barrier leakage by inhibiting the HIF‐1α/MMP signaling pathway in vascular dementia model mice

Author:

Che Ping1,Zhang Juan12,Yu Mingqian3,Tang Ping1,Wang Yanhui1,Lin Aolei1,Xu Jing1,Zhang Nan14ORCID

Affiliation:

1. Department of Neurology Tianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China

2. Department of Neurology Gucheng Hospital in Hebei Province Hengshui China

3. School of Medicine Nankai University Tianjin China

4. Department of Neurology Tianjin Medical University General Hospital Airport Site Tianjin China

Abstract

AbstractAimsDL‐3‐n‐butylphthalide (NBP) exerts beneficial effects on global cognitive functions, but the underlying molecular mechanisms are still poorly understood. The present study aimed to investigate whether NBP mediates synaptic plasticity and blood–brain barrier (BBB) function, which play a pivotal role in the pathogenesis of vascular dementia (VaD), in a mouse model of bilateral common carotid artery stenosis (BCAS).MethodsNBP was administered to model mice at a dose of 80 mg/kg by gavage for 28 days after surgery. Cognitive function was evaluated by behavioral tests, and hippocampal synaptic plasticity was evaluated by in vivo electrophysiological recording. Cerebral blood flow (CBF), hippocampal volume, and white matter integrity were measured with laser speckle imaging (LSI) and MRI. In addition, BBB leakage and the expression of proteins related to the Akt/ERK and HIF‐1α/MMP signaling pathways were assessed by biochemical assays.ResultsNBP treatment alleviated cognitive impairment, hippocampal atrophy, and synaptic plasticity impairment induced by BCAS. In addition, NBP treatment increased CBF, promoted white matter integrity, and decreased BBB leakage. Regarding the molecular mechanisms, in mice  with BCAS, NBP may activate the Akt/ERK signaling pathway, which upregulates the expression of synapse‐associated proteins, and it may also inhibit the HIF‐1α/MMP signaling pathway, thereby increasing the expression of tight junction (TJ) proteins.ConclusionIn conclusion, our results demonstrated the therapeutic effects of NBP in improving cognitive function via a wide range of targets in mice subjected to BCAS.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3