Global patterns and drivers of plant–soil microbe interactions

Author:

Jiang Feng1ORCID,Bennett Jonathan A.2ORCID,Crawford Kerri M.3,Heinze Johannes45,Pu Xucai1,Luo Ao1ORCID,Wang Zhiheng1

Affiliation:

1. Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences Peking University Beijing China

2. Department of Plant Sciences University of Saskatchewan Saskatoon Saskatchewan Canada

3. Department of Biology & Biochemistry University of Houston Houston Texas USA

4. Department of Biodiversity Heinz Sielmann Foundation Wustermark (OT Elstal) Germany

5. Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany

Abstract

AbstractPlant–soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non‐woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non‐woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non‐woody species, likely due to increased mutualistic microbes relative to soil‐borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant–soil microbe interactions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3