CB‐HRNet: A Class‐Balanced High‐Resolution Network for the evaluation of endoscopic activity in patients with ulcerative colitis

Author:

Wang Ge1,Zhang Shujiao2,Li Jie1,Zhao Kai1,Ding Qiang1,Tian Dean1,Li Ruixuan2,Zou Fuhao2,Yu Qin1ORCID

Affiliation:

1. Department of Gastroenterology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China

2. School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China

Abstract

AbstractEndoscopic evaluation is the key to the management of ulcerative colitis (UC). However, there is interobserver variability in interpreting endoscopic images among gastroenterologists. Furthermore, it is time‐consuming. Convolutional neural networks (CNNs) can help overcome these obstacles and has yielded preliminary positive results. We aimed to develop a new CNN‐based algorithm to improve the performance for evaluation tasks of endoscopic images in patients with UC. A total of 12,163 endoscopic images from 308 patients with UC were collected from January 2014 to December 2021. The training set and test set images were randomly divided into 37,515 and 3191 after excluding possible interference and data augmentation. Mayo Endoscopic Subscores (MES) were predicted by different CNN‐based models with different loss functions. Their performances were evaluated by several metrics. After comparing the results of different CNN‐based models with different loss functions, High‐Resolution Network with Class‐Balanced Loss achieved the best performances in all MES classification subtasks. It was especially great at determining endoscopic remission in UC, which achieved a high accuracy of 95.07% and good performances in other evaluation metrics with sensitivity 92.87%, specificity 95.41%, kappa coefficient 0.8836, positive predictive value 93.44%, negative predictive value 95.00% and area value under the receiver operating characteristic curve 0.9834, respectively. In conclusion, we proposed a new CNN‐based algorithm, Class‐Balanced High‐Resolution Network (CB‐HRNet), to evaluate endoscopic activity of UC with excellent performance. Besides, we made an open‐source dataset and it can be a new benchmark in the task of MES classification.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3