S100A9 promotes human lung fibroblast cells activation through receptor for advanced glycation end-product-mediated extracellular-regulated kinase 1/2, mitogen-activated protein-kinase and nuclear factor-κB-dependent pathways

Author:

Xu X12,Chen H12,Zhu X12,Ma Y3,Liu Q3,Xue Y12,Chu H3,Wu W4,Wang J32,Zou H12

Affiliation:

1. Division of Rheumatology, Huashan Hospital, Shanghai, China

2. Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China

3. State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China

4. Division of Dermatology, Huashan Hospital, Shanghai, China

Abstract

Summary S100A9 belongs to the S100 family of calcium-binding proteins and plays a key role in many inflammatory conditions. Recent studies have found that S100A9 was elevated significantly in the bronchoalveolar lavage fluid of idiopathic pulmonary fibrosis patients, and might be a biomarker for fibrotic interstitial lung diseases. However, the exact function of S100A9 in pulmonary fibrosis needs further studies. We performed this study to investigate the effect of S100A9 on human embryo lung fibroblast (HLF) proliferation and production of cytokines and collagen, providing new insights into the possible mechanism. S100A9 promoted proliferation of fibroblasts and up-regulated expression of both proinflammatory cytokines interleukin (IL)-6, IL-8, IL-1β and collagen type III. S100A9 also induced HLF cells to produce α-smooth muscle actin (α-SMA) and receptor for advanced glycation end-product (RAGE). In addition, S100A9 caused a significant increase in extracellular-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) phosphorylation, while the status of p38 and c-Jun N-terminal kinase (JNK) phosphorylation remained unchanged. Treatment of cells with S100A9 also enhanced nuclear factor kappa B (NF-κB) activation. RAGE blocking antibody pretreatment inhibited the S100A9-induced cell proliferation, cytokine production and pathway phosphorylation. S100A9-mediated cell activation was suppressed significantly by ERK1/2 MAPK inhibitor and NF-κB inhibitor. In conclusion, S100A9 promoted HLF cell growth and induced cells to secret proinflammatory cytokines and collagen through RAGE signalling and activation of ERK1/2 MAPK and NF-κB pathways.

Funder

National Science Foundation of China

Science and Technology Committee of Shanghai Municipality

US NIH NIAID U01

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3