Self-emulsifying drug delivery systems and cationic surfactants: do they potentiate each other in cytotoxicity?

Author:

Lam Hung Thanh12,Le-Vinh Bao13,Phan Thi Nhu Quynh14,Bernkop-Schnürch Andreas1ORCID

Affiliation:

1. Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria

2. Department of Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam

3. Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam

4. Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue city, Vietnam

Abstract

Abstract Objectives The aim of this study was to evaluate the cytotoxicity of self-emulsifying drug delivery systems (SEDDS) containing five different cationic surfactants. Methods Cationic surfactants were added in a concentration of 1% and 5% (m/m) to SEDDS comprising 30% Capmul MCM, 30% Captex 355, 30% Cremophor EL and 10% propylene glycol. The resulting formulations were characterized in terms of size, zeta potential, in-vitro haemolytic activity and toxicity on Caco-2 via MTT assay and lactate dehydrogenase release assay. Key findings The evaluated surfactants had in both concentrations a minor impact on the size of SEDDS ranging from 30.2 ± 0.6 to 55.4 ± 1.1 nm, whereas zeta potential changed significantly from −9.0 ± 0.3 to +28.8 ± 1.6 mV. The overall cytotoxicity of cationic surfactants followed the rank order: hexadecylpyridinium chloride > benzalkonium chloride > alkyltrimethylammonium bromide > octylamine > 1-decyl-3-methylimidazolium. The haemolytic activity of the combination of cationic surfactants and SEDDS on human red blood cells was synergistic. Furthermore, cationic SEDDS exhibited higher cytotoxicity of Caco-2 cells compared to SEDDS without cationic surfactants. Conclusions According to these results, SEDDS and cationic surfactants seem to bear an additive up to synergistic toxic risk.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3