The preparation and investigation of spinosin–phospholipid complex self-microemulsifying drug delivery system based on the absorption characteristics of spinosin

Author:

Song Panpan1ORCID,Lai Changjiangsheng2,Xie Junbo13,Zhang Yanqing13

Affiliation:

1. College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China

2. National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Science, Beijing, China

3. Tianjin Key Laboratory of Food Biotechnology, Tianjin, China

Abstract

Abstract Objectives The aim of this research was to investigate the intestinal absorption characteristics and mechanisms of spinosin (SPI), and a new dosage form was prepared to increase the intestinal absorption of SPI. Methods In this study, the intestinal absorption characteristics and mechanisms of SPI were first investigated using in situ absorption model and Caco-2 monolayer model. Subsequently, the phospholipid complex (PLC) loaded with SPI was prepared followed by a self-microemulsifying drug delivery system (SMEDDS) technique for developing a more efficient formulation. Key findings The results showed that the absorption rate constant (0.02 h−1) and absorption percentage (10%) of SPI were small. Paracellular and active transport pathways mainly mediated the intestinal absorption of SPI. Moreover, SPI-PLC-SMEDDS showed a nanoscale particle size and excellent dispersibility in vitro. The cellular uptake and transportation properties of SPI-PLC-SMEDDS in the Caco-2 cell model were improved significantly. Besides, a statistically dramatically higher oral bioavailability (almost fivefold) was observed following the oral administration of SPI-PLC-SMEDDS than free SPI on the basis of pharmacokinetic experiment results. Furthermore, the SPI-PLC-SMEDDS exhibited certain immunization. Conclusions SPI-PLC-SMEDDS could be a promising oral drug delivery system to improve the absorption of SPI.

Funder

'131' innovative talents training project in Tianjin

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3