Protracted eclogite‐facies metamorphism of the Dulan area, North Qaidam ultrahigh‐pressure terrane: Insights on zircon growth during continental subduction and collision

Author:

Hernández‐Uribe David1ORCID,Mattinson Chris G.2ORCID,Regel Megan E.2,Zhang Jianxin3ORCID,Stubbs Katie A.4,Kylander‐Clark Andrew R. C.5ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Illinois Chicago Chicago Illinois USA

2. Department of Geological Sciences Central Washington University Ellensburg WA USA

3. Chinese Academy of Geological Sciences Institute of Geology Beijing China

4. Department of Earth and Environmental Sciences Wesleyan University Middletown Connecticut USA

5. Department of Earth Science University of California Santa Barbara Santa Barbara California USA

Abstract

AbstractContinental subduction and collision are recorded by ultrahigh‐pressure (UHP) terranes; UHP terranes that form at early stages of an orogeny tend to be small and experience short residence at eclogite‐facies depths, whereas terranes that form at mature stages of an orogeny tend to be larger and experience longer residence at these depths, but accurately determining eclogite‐facies residence time requires a large geochronologic dataset tied to metamorphic conditions (via trace elements and/or inclusions). In the Dulan area, North Qaidam UHP terrane, China, it remains unclear whether the terrane experienced a long residence at eclogite‐facies depths, marking the mature stage of an orogeny or two distinct (ultra)high pressure ([U]HP) events (with short residence times), interpreted as the transition from oceanic subduction to continental collision, where one (U)HP event is related to the former and second (U)HP event to the latter. To address this issue, we report new zircon U–Pb ages and trace‐element data from eclogite and host paragneiss from the Dulan area and show that this terrane records ~42 Myr of eclogite‐facies metamorphism at (U)HP conditions, similar to other large UHP terranes. Zircon from 11 eclogite and 2 gneiss samples yields weighted mean ages of 463–425 Ma, flat heavy rare earth element (HREE) patterns without negative Eu anomalies, and eclogitic mineral inclusions, indicating eclogite‐facies conditions. Paragneiss metamorphic ages overlap with ages from eclogite but are generally younger, suggesting that a lack of internally generated fluids may have inhibited zircon growth and/or recrystallization until early decompression and white mica consumption in felsic gneiss generated fluids; thus, we interpret that these felsic rocks record the later stages of continental collision. Dataset patterns from all new and previously published analyses for the Dulan area (34 eclogite and 14 gneiss) suggest that metamorphic zircon in eclogite records prograde, peak and possibly early retrograde conditions, in contrast to the prediction from mass balance models that metamorphic zircon should only grow during exhumation and cooling. We reconcile our observations with these model predictions by recognizing that differential solubility can lead to grain‐scale zircon growth or recrystallization over a large segment of the pressure–temperature (P–T) path even where zircon abundance decreases at the whole‐rock scale.

Funder

National Science Foundation

M.J. Murdock Charitable Trust

Geological Society of America

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geochemistry and Petrology,Geology

Reference120 articles.

1. Rutile solubility in H2O, H2O–SiO2, and H2O–NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements

2. The age of the Mud Tank carbonatite, Strangways Range, northern territory;Black L. P.;BMR Journal of Australian Geology and Geophysics,1978

3. Kernel density estimation via diffusion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3