Strong plastic responses in aerenchyma formation in F1 hybrids of Imperata cylindrica under different soil moisture conditions

Author:

Nomura Y.1ORCID,Arima S.1,Kyogoku D.2,Yamauchi T.3,Tominaga T.1

Affiliation:

1. Graduate School of Agriculture, Kyoto University Kyoto Japan

2. The Museum of Nature and Human Activities Sanda Hyogo Japan

3. Bioscience and Biotechnology Center Nagoya University Nagoya Aichi Japan

Abstract

Abstract Hybrids can express traits plastically, enabling them to occupy environments that differ from parental environments. However, there is insufficient evidence demonstrating how phenotypic plasticity in specific traits mediates hybrid performance. Two parental ecotypes of Imperata cylindrica produce F1 hybrids. The E‐type in wet habitats has larger internal aerenchyma than the C‐type in dry habitats. This study evaluated relationships between habitat utilisation, aerenchyma plasticity, and growth of I. cylindrica accessions. We hypothesize that plasticity in expressing parental traits explains hybrid establishment in habitats with various soil moisture conditions. Aerenchyma formation was examined in the leaf midribs, rhizomes and roots of two parental ecotypes and their F1 hybrids in their natural habitats. In common garden experiments, we examined plastic aerenchyma formation in leaf midribs, rhizomes and roots of natural and artificial F1 hybrids and parental ecotypes and quantified vegetative growth performance. In the natural habitats where soil moisture content varied widely, the F1 hybrids showed larger variation in aerenchyma formation in rhizomes than their parental ecotypes. In the common garden experiments, F1 hybrids showed high plasticity of aerenchyma formation in rhizomes, and their growth was similar to that of C‐type and E‐type under drained and flooded conditions, respectively. The results demonstrate that F1 hybrids of I. cylindrica exhibit plasticity in aerenchyma development in response to varying local soil moisture content. This characteristic allows the hybrids to thrive in diverse soil moisture conditions.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3