Fusobacterium nucleatum promotes the early occurrence of esophageal cancer through upregulation of IL‐32/PRTN3 expression

Author:

Lei Jing1,Xu Feng1,Deng Chao1,Nie Xubiao1,Zhong Li1,Wu Zhixuan1,Li Juan1,Wu Xiaoling1,He Song1,Chen Yongyu1ORCID

Affiliation:

1. Department of Gastroenterology The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China

Abstract

AbstractPrevious studies have shown that gastrointestinal microbiome is associated with the development of esophageal cancer, but the relationship and molecular mechanism between esophageal microbiota and the early development of esophageal cancer remain unclear. Here, we found that Lactobacillus, Escherichia‐Shigella, Rikenellaceae‐RC9‐gut‐group, Morganella, and Fusobacterium were more abundant in early‐stage esophageal cancer (EEC) tissues compared with normal esophageal tissues. The abundance of bacteria such as Prevotella, Fusobacterium, Porphyromonas, Actinobacillus, and Neisseria in advanced esophageal cancer (AEC) was higher than that in EEC. Then, we further verified that Fusobacterium nucleatum (Fn) was enriched in EEC tissues and that its abundance increased with the progression of esophageal cancer by FISH and RT‐PCR. Next, we demonstrated that Fn promoted the proliferation of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Finally, we confirmed that Fn promoted ESCC proliferation by upregulating the expression of interleukin (IL)‐32/proteinase 3 (PRTN3) and then activating the PI3K/AKT signaling pathway. In conclusion, Fn promoted the early development of ESCC by upregulating the expression of IL‐32/PRTN3 and thereby activating the PI3K/AKT signaling pathway. A better understanding of the molecular mechanism of Fn in early esophageal cancer may contribute to the development of early screening markers to diagnose ESCC and provide new targets for treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cancer Research,Oncology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3