Quantifying the impact of different agroforestry systems on soil carbon fractions lability and long‐term carbon sequestration in Central Himalayas

Author:

Melkani Suraj12,Singh Veer2,Bhadha Jehangir H.1ORCID

Affiliation:

1. Department of Soil, Water, and Ecosystem Sciences University of Florida‐IFAS Gainesville Florida USA

2. Govind Ballabh Pant University of Agriculture and Technology Pantnagar India

Abstract

AbstractSoil Organic Carbon (SOC) is a key indicator for understanding the carbon dynamics in agroecosystems. Carbon fractions, on the other hand, can be more sensitive over short periods and can detect changes in the distribution and relationship patterns of SOC pools. To test this hypothesis nine, 16‐year‐old agroforestry systems (AFS) were tested and compared with control at 0–15 cm and 15–30 cm soil depths for K2Cr2O7 oxidizable carbon (SOC), pH, Electrical Conductivity (EC), Microbial Biomass Carbon (MBC) and carbon fractions, viz. very labile (C1frac), labile (C2frac), less labile (C3frac), and non‐labile (C4frac). Carbon lability index (CLI) and Stratification Ratio (SR) were calculated to assess the lability and vertical distribution of SOC. The study found that from the time of plantation, SOC stocks significantly improved in the range 19.82%–46.33% under different AFS with SOC sequestration ranging from 0.111 ± 0.002 to 0.697 ± 0.017 MgC ha−1 yr−1. Among different AFS, Bambusa vulgaris showed significantly higher SOC sequestration than all other treatments at both soil depths. AFS also demonstrated a significant improvement in SOC lability, leading to an increase in CLI by 0.08%–4.48% at 0–15 cm depth and a more pronounced improvement of 2.08%–18.32% at 15–30 cm depth. Among different AFS the highest improvement in CLI was observed in Bambusa vulgaris and the lowest in fallow land. The vertical distribution of carbon fractions in the soil was also affected by AFS, with the labile carbon fraction mostly concentrated in the topsoil layer as indicated by high SR values (1.133–1.203) for C1frac. The highly significant positive correlation (p < .05) of labile carbon fractions with SOC (r = .872** for C1frac, r = .900** for C2frac and r = .915** for C3frac) indicated the high dependence of SOC on labile carbon. The study revealed that AFS have the potential to significantly enhance carbon sequestration, while also impacting the lability and vertical distribution of SOC.

Funder

U.S. Department of Agriculture

Govind Ballabh Pant University of Agriculture and Technology

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3