Different organic farming systems under greenhouse do not improve soil C storage but affect microbial functions across soil aggregates

Author:

Baiano Salvatore1,Picariello Enrica2ORCID,Canfora Loredana3,Tittarelli Fabio3,Morra Luigi1

Affiliation:

1. Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops Laboratory of Caserta Caserta Italy

2. Department of Sciences and Technologies University of Sannio Benevento Italy

3. Council for Agricultural Research and Economics (CREA) Research Centre for Agriculture and Environment Rome Italy

Abstract

AbstractVegetable crops production is usually based on organic fertilizers purchased off‐farm while the care of soil fertility based on the maintenance of adequate level of soil organic matter receives few attentions. Organic production in plastic tunnel‐greenhouses represents the most intensified organic production system. Therefore, we compared four alternative organic production systems mainly characterized by the combination of fertilizer application practices based on compost, cover crops and commercial organic fertilizers. The systems were: input substitution organic method (BAU), biodynamic method (BIODYN), organic‐agroecological (AGROEC) and a not fertilized but organically managed control (CNT). The objective of this study was to explore in a 3‐year long trial, the effects of different organic systems on soil organic carbon (SOC) balance and the possible effects on soil chemical–physical characteristics, enzymatic activities involved in the C, N and P cycling, total bacterial biomass (16S rRNA), and the microbial functional genes cbbL and amoA in bulk soil and in three aggregate size fractions (macroaggregates >250 μm, free microaggregates 250–53 μm and free silt plus clay (free‐SC) < 53 μm). The conducive microclimatic conditions for soil microbial activities under the greenhouse, together with the transition toward a more intensive rotation and tillage, determined a decrease of the SOC stock (from 5.9 Mg C ha−1 in BIODYN to 10.8 in CNT) that was only partially balanced by C input distributed to soil (from 4.6 Mg C ha−1 in CNT to 31.6 in AGROEC). The different organic systems did not seem to directly affect chemical and microbial properties in the bulk soils. The higher SOC decline in CNT, however, resulted in the degradation of soil structure but at same time led to the increase of the FDAse in the bulk soil. At aggregate level, instead, more evident effects of organic systems were observed on both chemical–physical and microbial properties. The impact of organic systems on enzymatic activities differed in the different aggregate size classes while the effect on bacterial biomass and functional genes was the same in all aggregate size classes. Interestingly, the cbbL gene abundance in soil aggregates, especially in macroaggregates, was correlated positively to OC inputs (r = .82; p < .001). The amoA gene and bacterial biomass, instead, put in evidence for BIODYN, a significant decrease in soil aggregates that seemed to be related, particularly in macro and free microaggregates, to the low amount of total N content. In soil aggregates, only AGROEC compared with CNT, determined the increment of the phosphatase in macroaggregates, while BIODYN and BAU highlighted even lower values of β‐d‐glucosidase, β‐d‐glucosaminidase and phosphatase in free‐SC. In conclusion in high‐input organic systems under tunnels, the misleading notion that a high supply of OC and TN through green manuring, compost amendment etc., improves per se soil health is challenged.

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3