Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo

Author:

Hein E1,Munthe-Fog L1,Thiara A S2,Fiane A E23,Mollnes T E345,Garred P1

Affiliation:

1. Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Norway

2. Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway

3. Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway

4. Department of Immunology, Oslo University Hospital Rikshospitalet, K.G. Jebsen IRC, University of Oslo, Oslo, Norway

5. Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway

Abstract

Summary The complement system can be activated via the lectin pathway by the recognition molecules mannose-binding lectin (MBL) and the ficolins. Ficolin-2 exhibits binding against a broad range of ligands, including biomaterials in vitro, and low ficolin-2 levels are associated with increased risk of infections. Thus, we investigated the biocompatibility of the recognition molecules of the lectin pathway in two different types of cardiopulmonary bypass circuits. Bloods were drawn at five time-points before, during and postoperatively from 30 patients undergoing elective cardiac surgery. Patients were randomized into two groups using different coatings of cardiopulmonary bypass circuits, Phisio® (phosphorylcholine polymer coating) and Bioline® (albumin-heparin coating). Concentrations of MBL, ficolin-1, −2 and −3 and soluble C3a and terminal complement complex (TCC) in plasma samples were measured. Ficolin-3-mediated complement activation potential was evaluated with C4, C3 and TCC as output. There was no significant difference between the two circuit materials regarding MBL, ficolin-1 and −3. In the Bioline® group the ficolin-2 levels decreased significantly after initiation of surgery (P < 0·0001) and remained reduced throughout the sampling period. This was not seen for Phisio®-coated circuits. Ficolin-3-mediated complement activation potential was reduced significantly in both groups after start of operation (P < 0·0001), whereas soluble C3a and TCC in the samples were increased (P < 0·0001). Ficolin-2 was depleted from plasma during cardiac surgery when using heparin-coated bypass circuits and did not reach baseline level 24 h postoperation. These findings may have implications for the postoperative susceptibility to infections in patients undergoing extracorporeal circulation procedures.

Funder

Svend Andersen Research Foundation

The Danish Medical Research Council

The Novo Nordisk Research Foundation

The Research Foundation of The Capital Region of Denmark and Rigshospitalet

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3