Characterizing feral swine movement across the contiguous United States using neural networks and genetic data

Author:

Giglio Rachael M.1ORCID,Bowden Courtney F.1,Brook Ryan K.2,Piaggio Antoinette J.1,Smyser Timothy J.1

Affiliation:

1. United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Fort Collins Colorado USA

2. Department of Animal and Poultry Science, College of Agriculture and Bioresources University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractGlobalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human‐mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human‐mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.

Funder

Animal and Plant Health Inspection Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3