Innovative sound absorption technique: Step‐shaped ceramic fiberboards with veneer attachment for walls

Author:

Kang Chun‐Won1,Choi Byung‐Sook1,Zhu Shaohua2,Hashitsume Kazuharu3,Kolya Haradhan1ORCID

Affiliation:

1. Department of Housing Environmental Design and Research Institute of Human Ecology College of Human Ecology Jeonbuk National University Jeonju Republic of Korea

2. Department of Environmental Design Northeast Electric Power University Jilin China

3. Graduate Schools of Education Shimane University Matsue Japan

Abstract

AbstractThe subject of the present paper is improving sound absorption properties and protecting the dust generation of ceramic fiber boards. The two‐microphone impedance tube method measured the sound absorption coefficient (SAC) of ceramic fiberboards (CFB) with different shapes and sizes. The wood veneer was used to cover the ceramic fiberboard (VCFB) surface to improve the wall's appearance and prevent dust generation. The step‐shaped ceramic fiberboards with veneer attached (VCFBS) revealed improved SAC (.98, 2000 Hz) compared with CFB and VCFB. The noise reduction coefficient (NRC) and sound absorption average showed a 100% improvement compared to CFB. The surface morphology and air permeability were analyzed using a scanning electron microscope and a capillary flow porometer to correlate with the findings. Furthermore, the porosity and pore diameter of the CFB were also studied to gain a comprehensive understanding of its acoustic properties and sound absorption capabilities. Statistical T‐tests revealed significant variations in the SAC (p ≤ .005). Besides, the obtained SAC was compared with other reported sound‐absorbing materials. These findings suggest that using step‐shaped ceramic fiberboard covered with a wood veneer can significantly absorb sound and improve the living environment. This novel approach offers potential advancements in sound‐absorbing materials for building construction.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3