Formation, conversion, and elimination of intermediate spinel phase in MgO/kaolin mixture firing for cordierite

Author:

Yang Yang12,Yan Jiaqi13,Cheng Shujia13,Liu Gang1ORCID,Chen Bensong1,Zheng Kang14,Chen Lin14,Tian Xingyou14

Affiliation:

1. Institute of Solid State Physics Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei China

2. University of Science and Technology of China Hefei China

3. Anhui University Hefei China

4. Key Lab of Photovoltaic and Energy Conservation Materials Chinese Academy of Sciences Hefei China

Abstract

AbstractCordierite ceramic is usually used for diesel particulate filter owing to its excellent low thermal expansion coefficient and high thermal shock resistance properties. However, the co‐exited intermediate spinel phase can deteriorate the thermal and mechanical performances of cordierite ceramic product, because the spinel phase has much higher thermal expansion coefficient comparing to that of cordierite. In this study, two methods are utilized to reduce the spinel impurity in the cordierite ceramic. On the one hand, rational reaction resources were introduced to decrease spinel production. The formation of intermediate spinel phase is systematically researched by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Raman characterizations and the results clarified the preference of path “Enstatite + Mullite → Cordierite” for less spinel production in comparison to path “Enstatite + Al2O3 → Cordierite + Spinel.” Additionally, MgO was introduced as fluxing agent to promote liquid‐phase sintering, thus facilitating the conversion of spinel. On the other hand, the sintering schedule was improved by introducing a holding temperature gradient to promote the diffusion of Si4+ and further promote the conversion of spinel into cordierite. With these methods, the residual spinel phase is minimized, the resulting high‐purity cordierite has a 47% reduction in the thermal expansion coefficient from 3.07 × 10−6/K to 1.63 × 10−6/K compared to the original cordierite sample.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3