Study of wear and corrosion resistance of ATO nanoparticle–doped micro‐arc oxide film layers

Author:

Chen XiaoWen12ORCID,Song Hao2,Pu Huan2,Zheng Rui2,Zhang Meng2,Zhang DeFen2ORCID

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu Sichuan China

2. School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China

Abstract

AbstractIn order to enhance the corrosion and wear resistance of aluminum alloys in complex and variable environments, an Al2O3 ceramic film was prepared on the surface of 7A04 aluminum alloy in a silicate electrolyte system using a micro‐arc oxidation technique. Subsequently, antimony tin oxide (ATO) nanoparticles were used to dope the micro‐arc oxidation film to enhance the protective properties of the 7A04 aluminum alloy. The structural characteristics of the film were investigated by examining the surface and cross‐sectional morphology and the composition of the physical phases. The results show that ATO nanoparticles can promote the micro‐arc oxidation reaction, improve the surface morphology of the film layer, increase the thickness of the film layer and the denseness after sintering, and enter the film layer in the form of melt wrapping, which plays a role in refining the grain. In the study of the wear resistance and corrosion resistance of ATO‐doped ceramic film layers, it was found that the introduction of ATO nanoparticles did not significantly improve the wear resistance of the micro‐arc oxide ceramic film layers but significantly improved the corrosion resistance of the film layers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3