Affiliation:
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu Sichuan China
2. School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
Abstract
AbstractIn order to enhance the corrosion and wear resistance of aluminum alloys in complex and variable environments, an Al2O3 ceramic film was prepared on the surface of 7A04 aluminum alloy in a silicate electrolyte system using a micro‐arc oxidation technique. Subsequently, antimony tin oxide (ATO) nanoparticles were used to dope the micro‐arc oxidation film to enhance the protective properties of the 7A04 aluminum alloy. The structural characteristics of the film were investigated by examining the surface and cross‐sectional morphology and the composition of the physical phases. The results show that ATO nanoparticles can promote the micro‐arc oxidation reaction, improve the surface morphology of the film layer, increase the thickness of the film layer and the denseness after sintering, and enter the film layer in the form of melt wrapping, which plays a role in refining the grain. In the study of the wear resistance and corrosion resistance of ATO‐doped ceramic film layers, it was found that the introduction of ATO nanoparticles did not significantly improve the wear resistance of the micro‐arc oxide ceramic film layers but significantly improved the corrosion resistance of the film layers.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献