3D‐printed alumina‐based ceramics with spatially resolved porosity

Author:

Nohut Serkan12ORCID,Schlacher Josef3,Kraleva Irina3,Schwentenwein Martin1ORCID,Bermejo Raul3ORCID

Affiliation:

1. Lithoz GmbH Vienna Austria

2. Department of Mechanical Engineering Piri Reis University Istanbul Turkey

3. Department of Materials Science Montanuniversitaet Leoben Leoben Austria

Abstract

AbstractThe interest on porous ceramics has increased in the last years with the developments in additive manufacturing methods, enabling design of components with complex geometries for membranes, filters, catalytic converters, or biostructures. In this study, porous alumina samples were produced by using different concentrations of poly(methyl methacrylate) (PMMA) as pore‐forming agent (PFA) in a photocurable slurry via vat photopolymerization (VPP). The effect of layer thickness, PMMA particle size, and sintering temperature on the mechanical properties and microstructural features of the samples was investigated as a function of PMMA concentration. It is shown that the mechanical properties of 3D‐printed porous alumina are comparable with those fabricated by conventional processes. The Young modulus, fracture toughness as well as the biaxial strength decreased with increasing weight concentration of PFA (resulting in an increased total porosity). Specially using smaller PMMA particles has a positive effect, resulting in higher Young's modulus as well as fracture toughness. The feasibility of VPP for fabricating novel parts with more complex porosity regions is explored by printing multi‐material samples and porosity‐graded architectures. The counterbalance effect between porosity and mechanical properties may be optimized by tailoring material composition and processing parameters.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3