Sustainable activation of pumice with partially variable substitutions of metakaolin and/or fumed silica

Author:

Bagci Cengiz1ORCID,Kafkas Dogan1,Samuel Devon M.2,Kriven Waltraud M.2ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering Faculty of Engineering Hitit University Corum Turkey

2. Department of Material Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractSustainable alkali activation of pumice from Turkish origin was studied by a partial replacement of metakaolin and/or fumed silica additives. Following the characterization of as‐received pumice by X‐ray fluorescence spectroscopy, x‐ray diffraction, and nuclear magnetic resonance spectroscopy, a series of powder mixtures were prepared by introducing metakaolin and/or fumed silica (8, 14, and 20 M) into 1 M of the pumice. The mixtures were then dissolved in 11 M NaOH or sodium silicate solutions. The slurries were poured into polyacetal molds to obtain geopolymer samples for mechanical testing and cured in a constant 50°C temperature in a humidity oven for 48 h and then left for 1 week to undergo additional curing at ambient temperature. The microstructural, mechanical, and thermal properties of the final geopolymer samples were determined by XRD, scanning electron microscopy, Weibull analysis of 3‐point flexural and compressive tests and thermal conductivity measurements. Results showed that all the Weibull values were best for 14 M of metakaolin and/or fumed silica. The metakaolin‐added pumice yielded higher compressive strengths of (53.78 ± 33.30 MPa) than fumed silica (10.87 ± 4.04 MPa) and fumed silica plus metakaolin (41.22 ± 5.16 MPa). Thermal conductivities (0.19–0.46 Wm–1K–1) were also comparable to the thermal conductivity of metakaolin‐based geopolymers.

Funder

U.S. Army Corps of Engineers

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3