Effect of light spectrum, salinity, and glucose levels on Spirulina morphology

Author:

Nosratimovafagh Ahmad1,Esmaeili Fereidouni Abolghasem2ORCID,Krujatz Felix34

Affiliation:

1. Faculty of Animal Sciences and Fisheries Sari Agricultural Sciences and Natural Resources University (SANRU) Sari Iran

2. Fisheries Department, Faculty of Animal Sciences and Fisheries Sari Agricultural Sciences and Natural Resources University (SANRU) Sari Iran

3. Institute of Natural Materials Technology TU Dresden Dresden Germany

4. Biotopa gGmbH Center for Applied Aquaculture & Bioeconomy Radeberg Germany

Abstract

AbstractThis study evaluated how light spectrum, salinity, and glucose level affect Spirulina morphology, using response surface methodology (RSM). A full factorial experiment was conducted including three light conditions with different predominant spectral characteristics (“white”: 100% white; “red”: 80% red, 15% blue, and 5% green; and “yellow”: 80% yellow, 15% blue, and 5% green), four NaCl concentrations (0, 5, 15, 30 g/L), and four glucose levels (0, 1.5, 2, 2.5 g/L). Light spectrum conditions and salinity had significant effects on the filament length, spiral diameter, and screw pitch length. Glucose only had a significant effect in terms of the spiral diameter. The maximum filament length (1274 μm; under 30 g/L NaCl and 2.5 g/L glucose), spiral diameter (47 μm; under 1 g/L NaCl and 2 g/L glucose), and screw pitch length (112 μm; under 1 g/L NaCl and 2 g/L glucose) were attained under yellow light. In line with the simulation, more compacted filaments, that is, with a greater diameter (41 μm) and shorter screw pitches (78 μm), are observed under “red” light (4 g/L NaCl and 2.5 g/L glucose). Because longer but compact filaments are desirable for easier harvesting, we recommend a light spectrum that is predominantly red with a NaCl concentration of 5.8 g/L deprived of glucose, for the cost‐effective harvesting of Spirulina biomass.

Publisher

Wiley

Subject

Agronomy and Crop Science,Aquatic Science

Reference56 articles.

1. Enhanced phycocyanin production from Spirulina platensis using light emitting diode;Bachchhav M. B.;Journal of the Institution of Engineers,2017

2. Experimental investigation on Spirulina algae based thermal still for effective bio-desalination

3. Na+H+ exchange in the cyanobacterium Synechococcus 6311

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3