Contrasting responses to microhabitat and temperature determine breeding habitat differentiation between two Viola‐feeding butterflies

Author:

Wilby Andrew1ORCID,Grubb Lydia Atkinson12,Burrows Jessica13ORCID,Menéndez Rosa1ORCID

Affiliation:

1. Lancaster Environment Centre Lancaster University Lancaster UK

2. Avian Ecology Ltd. Walnut Tree Farm Warrington UK

3. Biological and Environmental Sciences University of Stirling Stirling UK

Abstract

Abstract Since widespread monitoring began in 1976 in the UK, habitat‐specialist butterfly populations have declined dramatically. The main driver is habitat degradation, caused primarily by land‐use change, perhaps interacting with changes in vegetation phenology. Here, we focus on two declining species: Boloria selene (Dennis & Schiffermüller) and Boloria euphrosyne L., Lepidoptera: Nymphalidae. We hypothesise that these species differ in their preferred breeding habitat, and this is driven by differences in their temperature preferences, mediated by vegetation cover. We use mark‐release‐recapture techniques and oviposition observations to characterise and compare adult distribution, habitat use and oviposition site preferences of the two species. Egg‐laying females of both species are shown to occur in areas with relatively high abundance of the larval food plants, Viola spp. (violets), principally V. riviniana, and they oviposit where Viola spp. abundance is locally high. However, in contrast to B. selene, ovipositing B. euphrosyne tends to occur in areas with relatively short and sparse cover of vegetation. B. euphrosyne oviposit in sites with a relatively high plant surface temperature irrespective of ambient temperatures, in contrast with B. selene in which the temperature of oviposition sites increases as ambient temperature increases. These differential temperature strategies likely underlie differences in breeding habitat preference. Microclimatic cooling caused by increased vegetation growth in spring may be one reason B. euphrosyne is declining in the UK, while both B. euphrosyne and B. selene may be affected by declining Viola spp. availability. Our data provide further evidence that drivers of butterfly declines can be multi‐factorial, and paradoxically, that thermophilic species do not necessarily benefit from climate warming if responses of other species result in cooling of their habitats.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3